Mechanisms of Impairment of the Photosynthetic Apparatus in Intact Leaves by Ozone

Thomas Gerhard Reichenauer^{a,*} and Harald Romuald Bolhàr-Nordenkampf^b

- Austrian Research Center Seibersdorf, Department of Environmental Research,
 A-2444 Seibersdorf, AUSTRIA. Fax: 0043-2254-780-3653.
 E-mail: thomas.reichenauer@arcs.ac.at
- b University of Vienna, Institute of Plant Physiology, Althanstraße 14, A-1090 Vienna, AUSTRIA
- * Author for correspondence and reprint requests

Oxygen Radicals

Z. Naturforsch. **54c**, 824–829 (1999); received November 28, 1998/April 10, 1999 Light Saturated Net Photosynthesis (A_{sat}), Current Photochemical Capacity (F_v/F_m). Ozone,

Tropospheric ozone has been recognised as a limiting factor for plant growth since late fifties of our century. The decrease in the rate of light saturated net photosynthesis ($A_{\rm sat}$) was shown to be the major effect of ozone in leaves with negative consequences for plant growth and the development of plant communities. The reasons for the ozone-induced decrease in $A_{\rm sat}$ are still under investigation. Possible mechanisms are an increasing stomatal limitation, an increase in mesophyll limitation including a reduction of the CO_2 fixation in the Calvin cycle and an impairment of the photochemical reactions in the grana membranes of chloroplasts. We conclude from the reviewed literature and from our own experiments that a decrease in carboxylation efficiency (CE) seems to be an early event caused by ozone leading to a decrease in $A_{\rm sat}$. The loss in current photochemical capacity ($F_v/F_{\rm m}$) appears with a lag phase of many days and therefore the loss is thought to be a secondary effect due to a decreased demand of 'assimilatory power'.